Python Backend Code
# Solana MEV AI Bot Backend
# Analyzes trades across Raydium, Pump.fun, Jupiter
# Detects arbitrage, liquidations, and front-running opportunities
import asyncio
import aiohttp
import json
from datetime import datetime
import numpy as np
from sklearn.ensemble import IsolationForest
from web3 import Web3
# Configuration
SOLANA_RPC = "https://api.mainnet-beta.solana.com"
JITO_RPC = "https://jito-mainnet.rpcpool.com"
MIN_TRADE_SIZE = 1.0 # SOL
MAX_SLIPPAGE = 1.0 # %
MIN_PROFIT = 0.5 # USDC
# DEX API endpoints
DEX_APIS = {
"raydium": "https://api.raydium.io/v2/main/amm/orderbooks",
"pumpfun": "https://api.pump.fun/orderbook",
"jupiter": "https://quote-api.jup.ag/v6/quote"
}
class SolanaMEVBot:
def __init__(self):
self.session = aiohttp.ClientSession()
self.w3 = Web3(Web3.HTTPProvider(SOLANA_RPC))
self.trade_history = []
self.opportunities = []
self.ai_scores = {
"arbitrage": 0,
"liquidation": 0,
"frontrun": 0,
"sentiment": 50
}
self.dex_stats = {
"raydium": {"trades": 0, "large_trades": 0, "profit": 0.0},
"pumpfun": {"trades": 0, "large_trades": 0, "profit": 0.0},
"jupiter": {"trades": 0, "large_trades": 0, "profit": 0.0}
}
async def fetch_dex_data(self, dex):
"""Fetch order book data from DEX APIs"""
try:
url = DEX_APIS[dex]
async with self.session.get(url) as response:
data = await response.json()
return self.parse_dex_data(dex, data)
except Exception as e:
print(f"Error fetching {dex} data: {str(e)}")
return None
def parse_dex_data(self, dex, data):
"""Parse DEX-specific data formats"""
if dex == "raydium":
return {
"bids": data["data"]["bids"],
"asks": data["data"]["asks"],
"timestamp": datetime.now().isoformat()
}
elif dex == "pumpfun":
return {
"bids": data["bids"],
"asks": data["asks"],
"timestamp": datetime.now().isoformat()
}
elif dex == "jupiter":
return {
"bids": data["bids"],
"asks": data["asks"],
"timestamp": datetime.now().isoformat()
}
return None
async def monitor_large_trades(self):
"""Monitor for large trades (>1 SOL) across DEXes"""
while True:
try:
# Fetch data from all DEXes concurrently
tasks = [self.fetch_dex_data(dex) for dex in DEX_APIS]
results = await asyncio.gather(*tasks)
# Process each DEX's data
for dex, data in zip(DEX_APIS.keys(), results):
if data:
self.analyze_trades(dex, data)
self.detect_arbitrage()
self.update_ai_scores()
await asyncio.sleep(1) # Polling interval
except Exception as e:
print(f"Error in monitoring loop: {str(e)}")
await asyncio.sleep(5)
def analyze_trades(self, dex, data):
"""Analyze trades and detect large ones"""
trades = self.extract_trades_from_data(dex, data)
large_trades = [t for t in trades if t["size"] >= MIN_TRADE_SIZE]
if large_trades:
self.dex_stats[dex]["large_trades"] += len(large_trades)
print(f"Found {len(large_trades)} large trades on {dex}")
# Store for opportunity detection
self.trade_history.extend(large_trades)
# AI analysis of trade patterns
self.analyze_trade_patterns(dex, large_trades)
def extract_trades_from_data(self, dex, data):
"""Extract trade information from DEX data"""
trades = []
# Implementation would vary by DEX API
# This is a simplified example
if dex == "raydium":
for bid in data["bids"][:10]: # Top 10 bids
trades.append({
"dex": dex,
"side": "buy",
"price": bid["price"],
"size": bid["size"],
"timestamp": data["timestamp"]
})
for ask in data["asks"][:10]: # Top 10 asks
trades.append({
"dex": dex,
"side": "sell",
"price": ask["price"],
"size": ask["size"],
"timestamp": data["timestamp"]
})
return trades
def detect_arbitrage(self):
"""Detect arbitrage opportunities between DEXes"""
# Simplified example - would compare prices across DEXes
# In reality would use more sophisticated cross-DEX analysis
# Get latest prices from each DEX
prices = {}
for dex in self.dex_stats:
if self.trade_history:
latest_trades = [t for t in self.trade_history if t["dex"] == dex]
if latest_trades:
prices[dex] = latest_trades[-1]["price"]
# Simple arbitrage detection
if len(prices) >= 2:
dex_pairs = list(prices.keys())
for i in range(len(dex_pairs)):
for j in range(i+1, len(dex_pairs)):
dex1 = dex_pairs[i]
dex2 = dex_pairs[j]
price_diff = abs(prices[dex1] - prices[dex2])
# If price difference exceeds threshold
if price_diff > (MAX_SLIPPAGE / 100 * prices[dex1]):
opportunity = {
"type": "arbitrage",
"dex_pair": f"{dex1}-{dex2}",
"price_diff": price_diff,
"potential_profit": self.calculate_profit(dex1, dex2, prices),
"timestamp": datetime.now().isoformat()
}
self.opportunities.append(opportunity)
self.ai_scores["arbitrage"] = min(100, int(price_diff * 10))
def calculate_profit(self, dex1, dex2, prices):
"""Calculate potential arbitrage profit"""
# Simplified calculation
base_amount = MIN_TRADE_SIZE
return base_amount * abs(prices[dex1] - prices[dex2]) * 0.95 # 5% fees
def analyze_trade_patterns(self, dex, trades):
"""Use ML to detect unusual trading patterns"""
# Convert trades to feature vectors
features = []
for trade in trades:
features.append([
trade["price"],
trade["size"],
float(trade["timestamp"].split("T")[1].split(":")[2]) # seconds
])
if len(features) > 10: # Need enough data
# Use Isolation Forest for anomaly detection
clf = IsolationForest(contamination=0.1)
preds = clf.fit_predict(features)
# Count anomalies
anomalies = sum(preds == -1)
if anomalies > 0:
print(f"Detected {anomalies} anomalous trades on {dex}")
self.ai_scores["frontrun"] = min(100, anomalies * 10)
def update_ai_scores(self):
"""Update AI scores based on recent activity"""
# Simple trending algorithm - would be more sophisticated in production
if len(self.opportunities) > 0:
latest = self.opportunities[-1]
if latest["type"] == "arbitrage":
self.ai_scores["arbitrage"] = min(100, self.ai_scores["arbitrage"] + 5)
elif latest["type"] == "liquidation":
self.ai_scores["liquidation"] = min(100, self.ai_scores["liquidation"] + 5)
# Sentiment score based on overall market activity
total_trades = sum([self.dex_stats[dex]["trades"] for dex in self.dex_stats])
if total_trades > 100:
self.ai_scores["sentiment"] = min(100, int(total_trades / 10))
async def run(self):
"""Main bot execution"""
try:
# Start monitoring tasks
monitor_task = asyncio.create_task(self.monitor_large_trades())
# Run until stopped
await asyncio.gather(monitor_task)
finally:
await self.session.close()
if __name__ == "__main__":
bot = SolanaMEVBot()
asyncio.run(bot.run())